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In this paper a study is begun of the complete unitary
invariant (1 — w7T)™ e, 1 — 2T) 'e), first considered by Livsic
in his paper ‘On Spectral Resolution of Linear Nonself Ad-
joint Operators’ Mat. Sh., 34 (76), 1954, 145-199, of a triple
(T, H, ¢) where T is a bounded linear operator on a Hilbert
space H and ¢ is a cyclic vector for 7 in H, as a reproducing
kernel. One of the important points is the construction of
a subset of the group algebra of the torus closed under
pointwise addition and convolution. This obviously will
generate a ring called the K-ring. A study of this ring will
be done later.

Several other theorems and constructions are also given.

Introduction. Let T be a bounded linear operator on a Hilbert
space H with a topologically cyclic vector ¢ in H. In this paper we
wish to study certain analytic functions associated with the triple
(T, H, ¢) for the sake of the problem of invariant subspaces of 7 in
H. (See also [8] and [15].)

The paper is divided into six sections. In §1 we present some
facts about reproducing kernels with analyticity properties. In 82
we consider a triple (7, H, ¢) of the above type. H can then be
represented as a Hilbert space of conjugate analytic functions «,[H]
with a reproducing Kernel K. T* on H assumes the form of reverse
shift on the Taylor coefficients of functions in a,[H]. (See also [11]
or [19].) In §3 we recover (7T, H, ¢) from the reproducing kernel of
a[H] in two ways. The notion of an analytic function of positive
definite type is introduced and it is shown that only these can arise
as reproducing kernels of «,H]. These functions are also related
to invariant subspaces (§4). In §5 a category of triples is constructed
and it is connected to the harmonic analysis of the two-torus via
the analytic functions of positive definite type. Section 6 consists of
some examples and counterexamples about the analytic functions of
positive definite type.

The paper is based on the author’s dissertation written under
the guidance of Professor John L. Kelley of the University of
California, Berkeley. The author would like to thank Professor
Kelley for help and advice.

1. Reproducing kernels and analytic functions of positive
type. We start with the definition of a reproducing kernel. Let
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568 V. N. SINGH

H be a Hilbert space of functions on a set X with the inner product
(y). In Theorem 1.2 we present a few facts of a theory of H due
essentially to E. H. Moore and N. Aronszajn. See [1] and [2].

DEFINITION 1.1. A reproducing kernel for H is a complex valued
function K on X x X such that:

(i) For all ye X, K, ¢ H where K (x) = K(z, ¥).

(ii) If ge H then for all ye X, (9, K,) = g(y), and

(iii) The linear span of the set {K,},., of functions is dense in H.

Note that if K is a reproducing kernel then the map g g(y) =
(9, K,) is a bounded linear functional on H; i.e., evaluation at a point
is continuous. Also if H is a pre-Hilbert space of funtions on a set
X with continuous evaluation then the completion H of H can be
realized as a space of functions on X by setting i(z) = (&, K,) for
ze X and he H where K, H is such that (f, K,) = f(x) for all fe H.

THEOREM 1.2. Let H be a pre-Hilbert space of functions on a
set X so that the evaluation map f— f(x) is continuous for all xe X,
let H be the completion of H. Then the following hold

(i) There is a unique reproducing kermel K for H.

(ii) If, for xe X, e, € H, is such that f(x) = (f, &) for all fe H
then K(z, y) = (&, €,).

(iii) If {b}ier %s an orthonormal basis for H, then K(z,y) =
Sier0:i(2)bi(y), and

(iv) If H is the set of finite formal sums >, a.2; where z,€ X
and a’s are complex numbers, with an inner product (,) given by
(e ay, 37 by;) = Dt S a:0;K(y;, ), the map i aw—
S a.K,, of formal sums to members of H is inner product preserv-
ing and its image is demse im H.

See [1] for a proof.

A reproducing kernel is a function of positive type in the fol-
lowing sense.

DEFINITION 1.3. A complex valued function K defined on X x X
is a function of positive type iff >3%,;-, a.,@;K(x;, x;) = 0 for all complex
numbers a,, a,, -+, a, and all members x,, ,, ---, x, of X.

Since >; a.K(x, ) = (2 a.K,,, K,) < V' K(w, x) V'Y a.@;K(;, ;)
from the Cauchy inequality, a function of positive type K also has
a further property, namely that if 3>}7,.,a.@;K(z;, «;) =0 then
>y a;K(x, x) =0 for all xe X. Thus it is clear from part (iv) of
Theorem 1.2 that a function of positive type is a reproducing kernel.
(A function of positive type K is necessarily selfadjoint i.e., K(z, y) =
K(y, x) for all ¢, y in X.)
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DEFINITION 1.4. For each s > 0, D(D,) is the open (closed) disc
of radius s about 0 in the complex plane €. A, is the space of
functions defined and conjugate analytic in D, and A, , the space of
functions defined on D, x D, which are conjugate analytic in the
first variable and analytic in the second variable. .7 is the space
of polynomials with complex coefficients. If K is a function of positve
type and is in A,, for some s then K is an analytic function of
positive type abbreviated a.f.p.t.

Let Ke A,,. The following theorem gives an alternate construc-
tion of a Hilbert space which is equivalent to K being a function of
positive type.

THEOREM 1.5. Let Ke A,,,. Then

(i) K is an a.fop.t. if 1/4z f 3( K(z, w)p( Yp(w)dz]z) x
c C
(dw/w) = 0 for all pe .Z where the path of integration C is a simple
contowr in D, such that its inverse winds around D, once.
(ii) Let (H, (,)) be a pre-Hilbert space of functions analytic in
a meighborhood of D,, with the inner product (p,Q)x = 1/47*

{ ) f Kz, w)p(w)a NT2@wfw). Then the map which takes a

member K, of H, o« a wmember of D, into the rational function
1/(1 — az) ts inner-product preserving.

Proof. Consider 1/4m jf f K(z, w)pG D p(w)dz/2)(dw/w) as a

limit of Riemann sums 1/47° 377, K(2;, 2,)0(z7")p(27") (252 — #i/25) ¥
(2:4, — 2,/2;). Since K is a function of positive type it is clear that 1/47*

f § K(z, w)p( ) p(w ) (dz/z)(dw/w) is positive. Let now a,, a, - -, @,

be any complex numbers and let «;, ---, @, € D,. Consider the rational
function f given by f(z) = >, a.,(1 — a;2)™*. Then 37, a.,0;K(a;, ;) =
1/47 jf . f Ky w) @) /o) @) o)) = lim 1/47 f i} f RCANE
2,270, (w)(dz/z)(dw/w) = 0 where p, is a sequence of polynoimials

converging to f uniformly on compact subsets of D,;, and C, C, are
chosen suitably. Thus (i) is proved the proof of (ii) follows from
the observation that the norm in the space of rational functions of
the function z— 32 a1l — a,2)™" is 3¢ ,-, a.@;K(a;, ;) which is the
same as the norm of 37, a,K,, in H.

2. The kernel function of cyclic triple. Consider now a Hilbert
space H and a bounded linear operator T' on H. We construct certain
functions of positive type associated with T and H. Some facts
from the functional calculus of 7T are used. (See [12].) If b is a
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complex valued function analytic in the neighborhood of the spectrum
o(T) of T define b(T) as follows.

DEFINITION 2.1. Let C be a contour lying in the domain of
analyticity of & which winds around each point of ¢(T') once. Then

W(T) =1/2n1 f b(z)(zI — T)'dz. Itis known that b+ b(T) is a linear
C

and multiplicative homomorphism of the space of functions analytic
in a neighborhood of ¢(T) into the space of bounded linear operators
on H. (See [12], page 199.)

The following result is probably well-known and will be used
later.

THEOREM 2.2. Let T be a bounded linear operator on a Hilbert
space H and suppose that there is an amnalytic function b defined
and nonzero on a conmected neighborhood of the spectrum o(T) of
T such that b(T) = 0. Then there is a nonzero polynomial p such
that p(T) = 0.

We leave the proof of this fact to the reader. See for example
[20].
Now we make the following definition.

DEFINITION 2.3. For » > 0. B, is the space of functions analytic
in a neighborhood of the closed disc D, with topology given as the
inductive limit topology of the spaces A(U) of the functions analytic
in s neighborhood U of D,. (See [14], page 219, problem D.)

It is known that B, is a Montel space. (See [14], page 196,
problem F(e).)
For r > 0, define A, as follows.

DEFINITION 2.4. A, is the space consisting of functions which
are complex conjugates of the functions in A,.

Let E be a linear space with a locally convex topology = and let
E’ be its dual. Then the strong topology for E’ is the topology of
uniform convergence on z-bounded sets.

The following result will be important in the sequel.

LEMMA 2.5. Let » > 0. Then A,. and B, are strong duals for

the pairing given by [f, 9] = }. F(®)g(z"")dz/z for fe B, and ge A,
(o}

where C is the contour t— (r + €)e*, 0 <t < 2w, for some small €
depending on f and g.
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Proof. We present an outline of the proof and refer to [14] for
more information. Since B, is a Montel space it is reflexive ([14],
20 F(a)) and hence it suffices to show that the dual of B, with
strong topology is A,,,, for the pairing above.

To show this, let for each z¢ D,;,, h, be the member of B, given
by h,(0) =1/(1 — &) for Le D,. For any continuous linear functional
g on B, let i,(g9) be defined by i,9)(z) = g(h,). Then i,(g) is a well-
defined function and is a member of A4,,. Moreover, g(f) = 1/27%

f cf(z)io(g)(z‘’)dz/z = 1/27i[f, i,(9)], where C is a contour as in the

statement of the proposition ¢ being so small that it is contained in
the domain of holomorphy of f. Conversely any member of A,
defines a continuous linear functional on B, by the above formula
and thus A4,, and B, are algebraically isomorphic.

To complete the proof it remains to show that the topology of
u.c.c. on A,, coincides with the strong topology of B.. To prove
this first observe that each bounded set of B, is contained in a
bounded set of A, for some 7 > r ([14], 17G (6) (iii)). Hence it
follows that B, with strong topology is metrizable ([14], 18.4). Since
each bounded subset of A, is uniformly bounded on every compact
subset of D,,, a Cauchy sequence in the u.c.c. topology of A, is also
a Cauchy sequence in its strong topology. That a Cauchy sequence
in the strong topology of B. is also a Cauchy sequence in its u.c.c.
topology follows from the observation that for any compact subset
K of D,,, the family of functions {.},.x is bounded in B, and also
the fact that for any he A,,, [h., h] = 2rih(z) where zc K.

Consider now an operator T on a Hilbert space H and let ¢c H.

DEFINITION 2.6. A Hilbert triple is a triple (7.H.e) where H is
a Hilbert space. T a bounded linear operator on H and ¢ a member
of H. A Hilbert triple is a cyclic triple if the orbit of e (the linear
span of the set {7}y, is dense in H. If » = ||T|| the map B8,: B.,— H
is given by B.(b) = b(T)e.

The map G, depends on T, H, and e¢. Note that B.(B,) is dense
in H iff (T, H, e) is cyclic.

The following is a consequence of Theorem 2.2,

THEOREM 2.7. If (T, H,e) is cyclic then H is infinite dimensional
if and only if B, is imjective.

Proof. If H is finite dimensional then it follows from the Caley-
Hamilton theorem of linear algebra that p(T) =0 for some pe &
([4], page 320) and thus B. is not injective. Since (T, H, ¢) is cyclic
the converse is the statement of Theorem 2.2.
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Now we establish commutativity of certain maps and construct
a reproducing kernel which is an a.f.p.t. The reason for this round
about construction will be clear from Theorem 4.3.

DEFINITION 2.8. Multiplication by 2, M,: B, — B, is the operator
given by M,f(C) = {f({) for e Domain (f).

The following lemma is an easy consequence of the functional
calculus.

LEMMA 2.9. B, and M, are continuous linear maps such that
B.l)=¢e and T-B, = B, M,.

DEFINITION 2.10. ¢: H— H' is defined by é(z)(%) = (¥, ) for all
x, yH.

H' is conjugate linearly isomorphic to H via the map ¢ and
6. T* = T'.¢ where T* is the Hilbert space adjoint of 7' on H and T’
is the Banach space dual of T. Also from 7.8, = B.-M, we obtain
B.-T' = M]-B., where g, M/, etc. are Banach space duals of 3, M,
etc. We know from Lemma 2.5 that B, can be identified with A4,,
via the map %,.

DEFINITION 2.11. The map «,: H— A,,, is the composition of the
maps 4, 8., 1, and — as given in the diagram

%0

HL w2 B A, A,
where — takes a function into its complex conjugate.
From Lemma 2.9 and the discussion following it we see that there

is a map S*: 4,,, — A, so that a,-T* = S*.a, where a, is as above.

THEOREM 2.12. Let (T, H, ¢) be a Hilbert triple with [|T|| = r.
Then S*a, = a,-T* where a, is such that o (x)(2) = (¥, 1 — 2T)7"e)
for all ze D,;, and all x€ H, and S*f(2) = f(2) — f(0)/z. Moreover, «,
is injective ioff (T, H, e) is cyclic and in that case, if dim H = oo,
the range of a, is dense in Ay,.

Proof. We show that a, is such that a.(x)(z) = (x, 1 — 2T) %)
for all ze D,;, and S*f(2) = f(z) — f(0)/2, because if this were so then
a(T*2)(z) = (T*x, A — 2T) %) = (», (1 — 2T)'Te) = S*(a.(x))(z) and
hence S*.a, = a,- T*. Now —0%,08'0¢(x)(z) = B'0g(x)(h.) = (x)(B.(h.)) =
(@ —2T)', x) = (x, X — 2T)%e).

Now we prove the rest of the theorem. Since a,(z) = 0 iff (x, (1 —
2T)'e) = 0 for all ze D,;, it follows that a.(x) =0 iff (z, p(T)e) =0
for all pe &2 If e is eyclic then this holds iff 2 = 0. The statement
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that if e is cyclic and if dim H = o then the range of «, is dense in
A, is a mere dualisation of the statement in Theorem 2.2.

Note that in general «, is injective on the orbit of ¢ and zero
on its orthogonal complement. If e¢ is cyclic then we can assign an
inner product ( )., on «[H] by (a.(x), @.(¥))., = (¢, y). This inner
product makes T™* on H unitarily equivalent to S* on a,[H]. Moreover,
and this is the point of the construction, «,[H] has a reproducing
kernel.

THEOREM 2.13. Let (T, H, ¢) be cyclic. Then for each z€ D,
the evaluation map a,(x)— a,(x)(z) defined on a,[H]| is continuous
and a,(2)(z) = (a.(x), &) where ¢, = a(1—2T)'e). Consequently a,[H]
has a reproducing kernel K given explicitly as K(z, w) = (1 —
wT) e, X — 2T)7%e) = D32 =0 (T, T™e)Z2™w".

Proof. Since a,(x)(z) = (x, 1 — 2T)("'e) = (a.(x), a.((1 — 2T)7'€))a,
for all a,(x) € a,[H], we see that the evaluation at z is explicitly given
by inner product with a member of «,[H] and is hence continuous.
Furthermore, the particular member of a,[H] corresponding to eval-
uation at z is a,((1 — 27)*) and hence ¢, = a,((1 — 2T)7%¢). Now in
view of Theorem 1.2 it follows that «,[H) has a reproducing kernel
given explicitly as K(z, w) = (@ ((1 — wT)e), a1l —zT)'e))., = (1 —
wT) e, (1 — zT)7'e).

DEFINITION 2.14. The kernel function of a cyclic triple (7, H, e)
is the reproducing kernel of «a.[H]. If (T, H,e) is just a Hilbert
triple, not necessarily cyclic, then the kernel function for (T, H, ¢) is
defined to be the kernel function for (T, 0(e¢), ¢) where 0(¢) is the
closed orbit of ¢ and 7, is the restriction of T to 0(e).

Two cyclic triples (7., H,, e¢,) and (T, H, e,) are defined to be
unitarily equivalent, (T, H, ¢,) ~ (T, H,, ¢,), iff there exists a unitary
map U: H, — H, with U.-T, = T,-U and Ule,) = e,.

Let (T, H, ¢) be a cyclic triple with kernel function K. Consider
the Hilbert space «,[H] with the inner product ( ),, obtained from
(T, H,e¢). We can construct a,[H] from K in the manner of Theorem
1.2, since K is the reproducing kernel for «,/[H]. Since a.,(¢) = K,
we have the following as a corollary to the preceding.

COROLLARY 2.15. Let (T, H, e) be a cyclic triple. Then the kernel
Junction K for (T, H, e) is a complete unitary invariant for (T, H, e),
i.e., (T* H,e) is unitarily equivalent via «, to (S*, a,[H], K,).

The above corollary can also be deduced directly. See for
example [15].
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3. The triple of an A.F.P.T. In this section we study the
kernel function of a triple more closely. First we mention some
properties of a kernel function. Note that if K is the kernel
function of (T, H,e¢) where |[T|| =r then K can be written as
Sima=o{T"e, Tme)z™w" for z, we D,;,. The boundedness of T is reflected
in a special property of K. The infinite dimensionality of H is also
reflected in another property of K. We describe these properties.
First the following definitions.

DEFINITION 3.1. The map .&7: A4,,,— A,,, is given by S7(a)(z, w) =
[a(z, w) — a(z, 0) — a(0, w) + (0, 0)]/(Zw) for z, we D,. A member K
of A,, which is an a.f.p.t. is an analytic function of positive definite
type (abbreviated a.f.p.d.t.) iff there is a positive real » so that
r’K — & (K) is also an a.f.p.t. We write o(K) for the least such ».
Ke A,, is a degenerate a.f.p.t. iff K is an f.p.t. and there is a

polynomial p so that f . f . K(z, w)p(z Y)p(w ) (dz/z)(dw/w) = (p, p) =0,

where C is such that its inverse contains D,, and is preferably a
circle with center 0.

It follows from Theorem 1.5 that if ‘a’ is a function of positive
type so is “(a), since f . § . L (@)(z, w)p(z ) p(w)(dz/z)(dw/w) =
a(z, w)p,(z ) p.(w™)(dz/z)(dw/w), where p, is the polynomial such

thg,t gcol(z) =2zp(2). As shown by the following result the kernel
function of a Hilbert triple is always an a.f.p.d.t.

ProposITION 3.2. If K 1is the kernel fumction for the triple
(T, H, ¢) then K s an a.f.p.d.t. and 7 (K) is the kernel function
for the triple (T, H, Te). Moreover, if (T, H, e) is cyclic, then = p(K) =
T and K is nondegenerate vff dim H = co.

We omit the straightforward proof of this proposition.

Recall that if (7, H, e) is a cyclic triple then we have seen in
§ 2 (Theorem 2.15) that (T™, H, ¢) is unitarily equivalent via «, to
(S*, a[H], K,) and that «,[H] with ( )., is a space of functions with
continuous evaluations at points, thus the space a,[H] and in fact
the triple (7%, H, ¢) and hence (7, H, ¢), is determined by the kernel
function K. We want to describe explicitly in two different ways
corresponding to the two Theorems 1.2 and 1.5 of §1, the construc-
tion of (T, H, e¢) from K.

First it follows from «,-T* = S*.a, and the fact that a} = a;*
that «,-T = S-a, where S is the adjoint of S* relative to the inner
product ( )., of a,[H]. We construct «,[H] in terms of the kernel
K of (T, H,e). We make the construction for an arbitrary a.f.p.t.
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Ke A,,. A formal for Sis given in Proposition 3.4. First a definition.

DerINITION 3.3. For K an a.f.p.t., Ke A, ,, let HX be the com-
pletion of the space of functions which are finite linear combinations
>ua.K,, for a;e¢ and «,c D, with respect to the inner product

(s 0Ky 35 0,K5)" = 3,5 a.b;K(8;, ).
We have the following result.

PropoSITION 3.4. Let Ke A,, be an a.f-p.t. Then H*C A,. If
K ts the kernel function for a cyclic triple (T, H, e) then a [H] = H*
and the adjoint S of S*: HX — HX 1is given by S(K,) = K, — K,Jw
for w =~ 0and S(K,) = dK/dw |,—..

Proof. The fact that HX consists of functions is known from
§1. Let fe H* and let f, = >, a7K,» be a sequence of finite sums
converging to f. Then since |3 a,K,(?) |* = K(?, 2) || a. K, |[* it follows
that the sequence f, of conjugate analytic functions is a Cauchy
sequences in the topology of uniform convergence on compact sets
of D,. Hence the limit function f is also conjugate analytic. Thus
H¥C A,.

Since, if K is the kernel function for (T, H, ¢) then K(z, w) =
(@ —wT)'e, X — 2T) %), a,|[H] = H*. Since e is cyclic the adjoint S
of S* is given by

S(K,)®) = (1 —wT)'Te, @ — 2zT) %)

_ <(1 =wT)'e— e, - zT)—le) — K, — KD(Z)
w w

for w = 0 and S(K,)(z) = (Te, @ — 2T)'e) = dK/dw | o).

COROLLARY 3.5. If K 1s the kernal function of the cyclic triple
(T, H, e) then (T, H, e)is unitarily equivalent via «, to (S, H%, K,).

Also this,

COROLLARY 3.6. (S, H%, K,) s a cyclic triple with kernel function
K.

Now we make the second construction corresponding to Theorem
1.5 of §1. First a definition.

DerFiNITION 8.7. If Ke Ay, and K is an a.f.p.t., Hy is the
completion of the space B, of functions analytic in a neighborhood
of D, with respect to ( ) given by (b, b,) = 1/4n* f f K(z, w) %

— ¢, J ¢
b,(w™)by(27")(dz/2)(dw/w), where b, b, are members of B, :za,nd where
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C; is a contour such that its inverse is rectifiable in the complex
plane, contains D, and has winding number 1 about D, and is con-
tained in the domain of holomorphy of b,. If multiplication by z, M,
is bounded on B, relative to ( )x then M, is its bounded extension
to Hy.

H is well-defined despite the arbitrariness of the contours and
r. This is so because of Cauchy’s theorem. Also note that Hy does
not consist of functions in general (see counterexample 1, § 6).

ProrosiTION 3.8. Let K be an a.f.p.t.€ Ay,.. Then

(i) M, on B, has bounded extension M, to Hy iff K is an
a.f.p.d.t.

(i) If K is an a.f.p.d.t. then K s the kernel fumction of
(M., Hg, 1).

(iii) If K 1is the kernel function of a cyclic triple (T, H, e) then
(M., Hg, 1) is unitarily equivalent to (T, H, ¢) under the map p+
p(T)e for all polynomials p.

Proof.
(i) K isan a.f.p.d.t. iff there is £ = 0 so that ¢*K — .&°(K) is of

positive type. However, f f F(K)(z, w)a(z")a(w ) (dz/z)(dw/w) =

f f K(z, w)La) @ ) (M.a)(w@zz)(dw/w), a € B,. Hence K~ (K)
is a function of positive definite type iff ¢ = || M, ||, B, being dense

in Hgx. To prove
(ii) note that if xe€ D,, then the function R;:z2— (1 — \2)'e B,

and (R, B,) =14z § § Ko, wl/( — wo)T — 2 N@zIR)dw]w)
1 Cq

where C,, C, are contours specified as in Definition 3.7. It follows

from the Cauchy formula (see [13], page 26) that (R, R.) = K(\, &)

and thus (i) is proved.
The proof of (iii) is straightforward and is left to the reader.

COROLLARY 3.9. A fumnction K is the kernel fumction for some
cyclic triple 1ff K is an a.f.p.d.t.

4. Further properties of an A.F.P.T.

DEFINITION 4.1. The linear map C': HX — H, is given on K s by
C'(K)() = (1 — az)™* and the map J: H, — H¥ is given on polynomials
by J(p) = 1/27i f K,p(w)dw/w for a simple contour C which lies

C

in the domain of analyticity of the function w+— K, and whose
inverse contains D, and has winding number 1 about it.
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To be sure we should refer to vector valued integration but here
we mean that J(p) is the function so that J(p)(z) = 1/273 f . K(z, w) x

p(w)dw/w. Clearly J(p) is independent of the contour C so long it
has the properties given in the definition.
We have the following proposition.

PrOPOSITION 4.2. If (T, H, ¢) is a cyclic triple then a, and C'
‘are unitary and the diagram

g g % g,

Tl sl 3 J'M;

H-2 H* 5 H,

is commutative. Moreover, C'"™* = J for any a a.f.p.t. K and C" is
unitary for any a.f.p.t.

Proof. We know that «, is unitary. That C’ is unitary for any
a.f.p.t. K is a consequence of Theorem 1.5. Since a,[H] = H* we
know that the diagram

Qe

H— H*
1| sl
H-*, Hx
is commutative. To prove that the rest of the diagram is also

commutative it suffices to prove that C’-S = M,. C’ on elements
of the type K, of HX. However, this is true since C’-S(K,)(?) = C'.

K. — K, () = Q- —1_ 21 — ar)” = M,-C'(K)() .
o a

Now we prove that C'* =J for any a.f.p.t. K. To do so it
suffices to consider elements of the form C'(K,) of Hx. For suchan
element

1 _ 1 K
J.-C'(K,) = — K,1— ! = v _dw =K, .
( Py fc ( aw™)(dw/w) o Yem—a w

Now let H be the closure of B, under an inner product. Then
we have the

THEOREM 4.3. H = Hy for some a.f.p.t. Ke A,,, 4, iff H* = H-.

Proof. If H = Hy then the inclusion of B, in H is continuous
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where B, is taken with its u.c.c. topology. Hence the dual of H can
be identified with H* as in Proposition 4.2. Conversely if H* = H*
for some a.f.p.t. K in A,,,, ,, then the dual can be identified with
H is the same as Hy C B, via the map C'.

The following two theorems give characteristics of an a.f.p.d.t.
supplementing Definition 3.1 and furnishing a connection between an
a.f.p.d.t. and an invariant subspace.

THEOREM 4.4. Let Ke A,, be an a.f.p.t. Then K is an a.f.p.d.t.
iof and only if HX is S*-invariant.

The above theorem is an immediate consequence, of the fact
that the inclusion of HX in A, is continuous, and the closed graph
theorem. We leave the proof to the reader.

Let (T, H, ¢) be a cyclic triple. We prove another proposition
which relates invariant subspaces of T in H to functions of positive
definite type arising from the kernel function of (7, H, ¢) and the
projection corresponding to the invariant subspace.

THEOREM 4.5. Let (T, H,e) be a cyclic triple. Then P is an
orthogonal projection so that P(H) is invariant under T if and only
if the function K' defined by K'(z, w) = (I — P)1 — wT)"e,(I — P) x
@ —2T) ') is an a.f.p.d.t.

We have to show that P(H) is invariant under 7 if and only if
the operator (I — P)x+ (I — P)Tx is bounded. We prove this fact
as a consequence of a more general lemma.

LEMMA 4.6. Let (T, H,e) be a Hilbert triple and H a first
countable Hausdorf linear topological space, T a continuous linear
operator defined on H and & a member of H. Let H; = {wc H; there
is a sequence {p(T)e}, —x and {p(T)&};— 0 where each p,e P, i =
1,2 ---}. Then H; is a closed invariant subspace for T.

Proof. H; is clearly a linear subspace of H invariant under T.
The whole difficulty lies in showing that it is closed. This is also
quite straightforward and we do it as follows. Let {p7(T)e}; be
a sequence converging to x, and let also the {x,}. converge to x.
Also let {pr(T)é}; converge to 0 for each m. Let B(z, 2")(B(z, 27"))
be the open (closed) ball of radius 27" with center at z and let {n.},
be the sequence for which {#.}. N B(x, 27%) — B(x, 2% % @. Such
a sequence {n;}, — «~ exists since {x,}, — ®. For each n, choose an
x,, € B(z, 27%) — B(», 2~%"%). Suppose also that {U,}: is a countable
neighborhood basis at 0 for A. For each n, choose a Djiny SO that
p;-‘fni)(T)E e U,, and p}},,(T)e is in B(x, 27%) — B(x, 27""). It is possible
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to do so since {p}i(T)e}; — ., and {pri(T)e}; — 0 for each =, by
supposition.

Now the sequence {p},,(T)é}., has 0 as a cluster point in A so
there is a proper infinite subsequence of this sequence which tends
to 0. Since {pj,,(T)e},, — = in that subsequence if we replece 7' and
e by T and ¢ it tends to . Thus H; is closed.

The proof of this lemma can perhaps be simplified by construec-
tion of a bounded intertwining operator from H to H whose kernel
coincides with the subspace given by the limits of {p,(T)e}; as above.

Now we complete the proof of Theorem 4.5 as follows.

Proof of Theorem 4.5. Suppose that P(H) is invariant for
T. We know that ||p|lz,, = lI(I = P)p(T)elln. Thus || M.pllay =
I - P)To(T)ellx = |(I = P)TPp(T)e + (I — P)T(I — P)p(T)ellx =
I = PYT(I—P)p(Tells =l T — P)p(T)e ||z = M || (I— P)yp(T)ellx =
M| plla,, where M is the norm of T, and the suffix indicates the
space in which norm is to be taken. It follows that M, is bounded
on Hy, and hence K’ is an a.f.p.d.t.

In order to prove the converse we use Lemma 4.6 and put for
H T & Hy, M, and 1 respectively.

We conclude by characterizing interlacing maps of cyclic triples
to another triple in terms of kernel functions as a preparation for § 5.

THEOREM 4.7. Let (T, H, e,) be a cyclic triple and let (T, H, e,)
be another triple and ¢,, the unique map given by ¢.(p(T)e) = p(T)e,
Jor all pe ~. Then ¢, extends to a unique bounded linear operator
o0 H, — H, iff there exists a real number r so that r*K, — K, is an
a.f.p.t. where K, and K, are the kernel functions of the triples
(T, H, ¢) and (T., H,, e,) respectively.

5. A category of triples and harnomic analysis. Let & be
the class of all triples (7T, H, ¢) so that T is a proper contraction.
Then % becomes a category if we define morphism between triples
(T, H, ¢,) and (T,, H,, ¢,) to be a bounded linear map ¢,: H, — H, so
that ¢.,(e,)) = ¢, and T,-4,, = ¢, T.. We discuss some elementary facts
about this category. See [16] for terminology.

Let H, and H, be two Hilbert spaces with linear operators T,
and T,. Then H @ H, and T, P H, on H, P H, are defined as usual.
(See [17].) It is well-known that if T.: H, — H, and T,: H,— H, are
bounded linear operators then T, P T, is also bounded and infact

I1T.® Tl < max (| T2l [ T21I)

We summarize some properties of this category & in the follow-
ing lemma.
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LEMMA 5.1. The following hold in the category € :

(i) A morphism ., (T, H, e)— (T, H, e,) is an epimorphism
W ¢..(H,) ts dense in H,.

(ii) If (T, H, e) is cyclic then there is at most one morphism
from (T, H, e) to any other object (T, H, e) of &.

(iii) (T, H,e) 1is cyclic iff every morphism to it is an
epimorphism.

(iv) & has a terminal object, namely the triple (0, 0, 0).

(v) The operation @ is a sum as well as a product in & .

(vi) A morphism ¢, (T, H, e)— (T, H, e) is a monomorphism
iff Ker 4,, = {0}.

Proof. We prove only (vi) and leave the proof of the rest of
the proposition to the reader. If ¢,: H, — H, is an injection then
clearly ¢.,: (T, H, e,) — (T,, H, ¢,) is a monomorphism. To prove the
converse let ¢,, be a monomorphism. Then we have to show that
Ker (4,) = {0}. It is easy to see that Ker (4,,) is a closed subspace of H,
invariant under 7,. Consider the triple (7, @ T,, H, @ Ker(4.,), e, € 0).
Define the morphisms f and g¢:(7.D T, H, P Ker (4.,), e H 0) —
(T, H, e,) by setting f = p, and g = ¢,, + ¢,, where p, is the projec-
tion on the first coordinate and ¢,, is the identity mapping of (T}, H,, ¢,)
into (T, H, e,) and &,: (T, Ker (¢,,), 0) — (T,, H,, 0) is the injection of
Ker (¢,) into H,. Thus gx@y) =2 +y. We see now that the
morphisms ¢,,0 and 4,f are equal. However f= g. Thus ¢, is not
a monomorphism if Ker (¢,,) = {0}.

The category & also admits the usual tensor product operation
®. H @ H, and its l*-completion H, @ H, T,® T, and its extension
T.®T, are defined as usual. It is well-known that if T, and T, are
bounded linear operaters then sois 7, ® T, and in fact || T, Q T,|| <
T T: 0. (See [6].)

LEMMA 5.2. The operation K is a product in &.

We leave the proof of this statement to the reader. It is easy
to check that & is not a sum in & (see counterexample 2, § 6).

Unfortunately we do not know an abstract characterization of
the category &

DEFINITION 5.3. An atom in a catogory is an object such that
every morphism from it is either zero or a monomorphism.

Theorem 5.4. Let (T, H,e)e & be a cyclic triple then T has
no proper invariant subspaces in H if (T, H, e) is an atom in & .

Proof. If T has no proper invariant subspaces then it is clear
from (vi) Lemma 5.1 that (T, H, ¢) is an atom. If T has a proper
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invariant subspace let it be given by the range of an orthogonal
projection P. Let (T, H, ¢) be written as (T, {p(T)e| pe &}, ¢) con-
sider also the triple (M, {Z?}p, 1) where the inner product on {F}, is
given by (p, @) = (I — P)p(T)e, (I — P)g(T)e). Then (M, {F}s 1)
is a cyclic triple (Theorem 4.5). Now the desired morphism
9t (T, {p(T)e | pe &}, ) = (M., {F}p, 1) is given by ¢.(p(T)e) = p.

It is not clear whether the category & also has an initial object.
However, if we adjoin to & the triple (M., H* 1) where H® is the
Hardy space of analytic functions defined on D, whose boundary
values are square integrable on the unit circle, and obtain another
category %' then %’ certainly has an initial object; namely the
triple (M,, H* 1). This will be given as a corollary in the latter
part of this paper.

We now make the following definition and show that the kernel
function map % defined as below connects & and the harmonic
analysis of the two-torus.

DEFINITION 5.5. The map % named the kernel function map is the
map which assigns to a member (T, H, ¢) of % its kernel function.

Now we prove the following properties of %k related to the
operations @ and @ of &

THEOREM 5.6. If K, and K, are the kernel functions for (T, H,e,)
and (T, H,, e,) frespgctively, then the kernel functions for (T.D T, H, D
H,e Pe)and (TR T.,, H K H, e, R e) are K, + K, and K,  K; respec-
2z (27

tively where K, = K, (2, ) = S S K(ze, we=) Ky(e”, ¢) (d0/27)(dv/27)
0 0

and where d0/2m and d/27 denote the normalized Haar measure of

the circle.

Proof. Let C: , and C%,., be the coefficients of z"w" in a Taylor
expansion of the kernel functions of the triples (T.P T, H, P H, e, Pe,)
and (T, Q T, H® H, ¢, X e, respectively.

Then,

Con = (T, D T)"(e. D €), (T, D T)"(e. D eDmom,
=(Tr @ THe. De), T D T(e. Deo))mon,
= (Tre,, Tre)n, + (Tre, Ti"e,)y,
and

Ca=((T,® TY(e.® e, (T, ® T)"(e, ® €))u bn,
=(TrQRQ Ty, Rey), T R Tie, ® ez))l-h@Hz
= (Tlnely Tlmex)lll(Téne2; T2m62)H2
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and hence 3% ,..,Ci.z""w" = K,(2, w) + K,(z, w). We also observe
that since T, and T, are proper contractions K, and K, ¢ A4,,, for some
s > 1 and hence
had 27 ((2r oo
Zo Ch .2 ™" = 5 S >, (Tre, Tire)zme ™ we™ ™Y
myn= [ 0 m,n=0

X S (Tres, Tre)e ™evdo/2mdy/on

=0

= SM SZI K(ze™®, we™¥)K(e”, eV)df/2ndy/2T .
0 0

DEFINITION 5.7. The equivalence relation =~ defined on % is
such that (T, H, ¢) ~ (T, H, e, iff there is a unitary map ¢: 0(¢) —
0(e,) so that ¢(e) = ¢, and ¢-T = T,-¢.

Now let us consider the category & with the equivalence relation
=~ and denote this new object by Z. Then the operations @ and @

~

are defined on £ and we have the following corollary.

=

THEOREM 5.8. The class % 18 1somorphic to a subset of the group
algebra of the torus and so it is a cancellative abelian semigroup
under the operation @. It also has no divisors of zero wunder the

operation .

We remark that the set of a.f.p.t.’s is closed under pointwise
multiplication. However, the set of a.f.p.d.t.’s is not closed under
pointwise multiplication. (See counterexample 3.)

6. Some examples and counterexamples.

EXAMPLES.
1. Consider (M,, H* 1). Then (M,, H% 1) is a cyclic triple and
its kernel function K is given by

K(z, w) = i_ 2", 2")Emw = (1 — Zw)™ .

N

If ¢q is an inner function then k(M,, H? 1) = k(M,, H?, q).

2. The triple (V, L* [0, 1], 1), where V is the Volterra operator
on the Hilbert space of square integrable real-valued functions on
the closed interval [0, 1] with Lebesgue measure, is also a cyclic triple.
Its kernel function K is given by

K@ w) = > (VHQU), V*A)ew"

m,n=0
1 4w
=S e"(?-{—w)dx:e_—l—.
0 Z+w
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3. The kernel function of the triple (M,, €, 1) is the function
1V{@A — a2)'(1 — aw)™*. This is a special case of an example to be
given in the latter part of this paper.

Counterexamples.

1. This counterexample shows that in general Hy is not a space
of functions. We claim that the following holds.

Let (M;, Hg, 1) be a canonical triple with

Kz, w) = >, e~ "™z "w" .
n=0

Let M(X) denote the space of functions (measurable or otherwise)
for a Borel field (X, A4, ) finite valued except for a set of measure
zero, and let it be given the topology of pointwise convergence.
Then the identity map % of the polynomials contained in H to the
polynomials contained in M(X) if injective is not continuous. This is
seen as follows.

First the space M(X) is complete. Second the sequence of func-
tions {f,}, where f,(2) = ¢*"~'2" is a complete orthonormal sequence in
H,. Hence the sequence of polynomials {p,}..r given by »,(z) =

»,2 % "'z converges to a member & of H,. Now let X be any
subset of the complex plane ¢. Since ¢ is injective X # {0}. It
suffices to show that the sequence p,(z), does not converge for any
z€l,z+0. Let z=7e¢’. Then |p.(2)— p._i(r)| =e""'(r/2)" =
gr"rtrlosri2 wwhich tends to oo if # == 0. Hence the sequence {p.(?)}.
is divergent unless z = 0.

2. If (T, H,e)is a cyclic triple then the subspace {p(T)e|pe .F°}
can be given the structure of an abelian ring if we define
p(T)e-q(T)e = pg(T)e. However, this operation is not continuous
and does not extend to all of H. Take for (7, H,¢) the triple
(M., H* 1). Consider the convergent sequence {p.}, given by »,(z) =

»-12"/m*. The limit is of course in H®. However, a simple calcu-
lation shows that p? does not converge in H®. We leave the calcu-
lation to the reader. (To see how it relates to & not being a sum
in % take for ji:(T, H, ) —>(TQ T, HQ H, ¢ @¢) the map f(T)e+>
f(T)e ® e and for 7,: (T, H, e)———»(T@) T, H@ H, ¢ e) the map g(T)e —
¢ ® 9(T)e and let (T, H, e;) be the triple (7, H, e¢) with ¢,; and ¢ as
the idgntity map (f(T)er— f(T)e) then there is no map from ¢: (T X
T,HQY H,e®e)— (T, H, e) so that goj, = ¢,; and goj, = ¢y.)

3. We show now that every a.f.p.t. is not an a.f.p.d.t. as well
as the pointwise product of two a.f.p.d.t.’s is not necessarily an
a.f.p.d.t. The kernel function of the triple (1, ¢, 1) is the function
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Kz, w) =01 —2)"'1—w)"'. This is an a.f.p.d.t. Its square the
function K (2, w) = (1 — 2)"*(1 — w)~* is obviously an a.f.p.t. But it
is not an a.f.p.d.t. as Hy is one dimensional and the a.f.p.d.t. cor-
responding to a triple (M,, €, B) is the function B*1 — az)~'(1 — aw)™.
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